Synthesis and preliminary cytotoxicity study of a cephalosporin-CC-1065 analogue prodrug

نویسندگان

  • Yuqiang Wang
  • Huiling Yuan
  • Susan C Wright
  • Hong Wang
  • James W Larrick
چکیده

BACKGROUND: Antibody-directed enzyme prodrug therapy (ADEPT) is a promising new approach to deliver anticancer drugs selectively to tumor cells. In this approach, an enzyme is conjugated to a tumor-specific antibody. The antibody selectively localizes the enzyme to the tumor cell surface. Subsequent administration of a prodrug substrate of the enzyme leads to the enzyme-catalyzed release of the free drug at the tumor site. The free drug will destroy the tumor cells selectively, thus, reducing side effects. RESULTS: A CC-1065 analogue was conjugated to a cephalosporin affording prodrug 2. The prodrug and its corresponding free drug, 1, have IC50 values of 0.9 and 0.09 nM, respectively, against U937 leukemia cells in vitro. CONCLUSIONS: For the first time, a prodrug comprised of a cephalosporin and a CC-1065 analogue has been synthesized. The preliminary in vitro studies show that the prodrug was 10-fold less toxic than the free drug. Prodrug 2 has the potential to be useful in cancer treatment using the ADEPT approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and cytotoxicity of a biotinylated CC-1065 analogue

BACKGROUND: The use of pretargeting technology for cancer imaging and treatment has made significant progress in the last few years. This approach takes advantage of the fact that biotin binds strongly to proteins avidin and streptavidin. Thus, a non-toxic tumor cell specific antibody is conjugated with avidin/streptavidin, and is administered to patients. After the antibody binds to tumor cell...

متن کامل

Chemical and biological explorations of the family of CC-1065 and the duocarmycin natural products.

CC-1065, the duocarmycins and yatakemycin are members of a family of ultrapotent antitumour antibiotics that have been the subject of extensive investigations due to their mode of action and potential in the design of new anticancer therapeutics. The natural products and their analogues exert their effects through a sequence selective alkylation of duplex DNA in the minor groove at the N3 of ad...

متن کامل

Mechanism of interaction of CC-1065 (NSC 298223) with DNA.

CC-1065 (NSC 298223), a potent new antitumor antibiotic produced by Streptomyces zelensis, interacts strongly with double-stranded DNA and appears to exert its cytotoxic effects through disruption of DNA synthesis. We undertook this study to elucidate the sites and mechanisms of CC-1065 interaction with DNA. The binding of CC-1065 to synthetic and native DNA was examined by differential circula...

متن کامل

Determination of the Biological Activity and Structure Activity Relationships of Drugs Based on the Highly Cytotoxic Duocarmycins and CC-1065

The natural antibiotics CC‑1065 and the duocarmycins are highly cytotoxic compounds which however are not suitable for cancer therapy due to their general toxicity. We have developed glycosidic prodrugs of seco-analogues of these antibiotics for a selective cancer therapy using conjugates of glycohydrolases and tumour-selective monoclonal antibodies for the liberation of the drugs from the prod...

متن کامل

Effects of U-71,184 and several other CC-1065 analogues on cell survival and cell cycle of Chinese hamster ovary cells.

CC-1065 is a very potent antitumor antibiotic which selectively binds in the minor groove of DNA with alkylation at N-3 of adenine. Since therapeutic doses of CC-1065 caused delayed deaths in mice, analogues were synthesized, some of which had significant antitumor activity. The effects of several of these analogues on inhibition of CHO cell survival, cell progression, and their phase-specific ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BMC Chemical Biology

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2001